USN

Third Semester B.E. Degree Examination, Dec.2017/Jan.2018 **Logic Design**

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, selecting at least TWO questions from each part.

PART - A

- What is a digital electronic circuit? List the applications of digital circuits and systems. a.
 - (04 Marks) With an aid of a circuit diagram, explain the operation of a 2-input standard TTL NAND gate with totem-pole output. Show that NAND gate is an universal logic gate.
 - c. Explain sourcing and sinking current, noise immunity, standard loading and output-input profile of standard TTL device. (08 Marks)
- 2 Realize a logic circuit using only NAND gates that converts a 4-bit binary input to a Graycode output. Use Karnaugh maps for simplification of logic expressions. (12 Marks)
 - b. Find the simplified expression of $Y = f(A, B, C, D) = \sum m(0, 3, 4, 5, 6, 7, 11, 14)$ using Quine-Mccluskey method. (08 Marks)
- Design a full adder circuit using a 3-to-8 decoder and multi-input OR gates. Write VHDL / 3 verilog code for a 2 to 4 decoder. (06 Marks)
 - b. Explain how a 7446 decoder-driver is used to drive a common anode seven-segment indicator. (06 Marks)
 - Distinguish:
 - (i) PAL and PROM.
 - (ii) PLA and PAL.
 - Encoder and multiplexer. (iii)
 - (iv) Even parity and odd parity.

(08 Marks)

- What is a Schmitt trigger? Show how it can be used to ensure rapid switching action.
 - (04 Marks) (06 Marks)
 - b. Show how to use a simple RS latch to eliminate switch contact bounce.

 - Show how SR flip-flop is converted into JK flip-flop and explain how racing problem in JK flip-flop is avoided. Write VHDL/verilog code for JK flip-flop. (10 Marks)

PART - B

- 5 What is a shift register? How long will it take to shift an 8-bit number into a 74164 shift register if the clock is set at 10 MHz?
 - b. Explain the working of 4-bit parallel-access shift register 7495. Show how it can be wired for shift left operation. (08 Marks)
 - Discuss the advantages and disadvantages of a ring counter. Also write VHDL/verilog code for a twisted tail counter. (08 Marks)
- Realize a 3-bit asynchronous binary up-down counter using J-K flip-flops and basic logic 6 (06 Marks)
 - b. Design a modulo-4 synchronous counter using J-K flip flops. (10 Marks)
 - Realize a sequence generator circuit using synchronous counter to generate a repetitive sequence of binary word 1011 with minimum number of memory elements. (04 Marks)

7 a. Distinguish Moore model and Mealy model of sequential logic system. (04 Marks)

b. What is an ASM chart? Draw the ASM chart of a sequence generator that receives binary data stream at its input, X and signals when a combination '011' arrives at the input by making its output, Y high which otherwise remains low. Consider Moore model. (08 Marks)

c. Discuss the problems with asynchronous sequential logic circuits.

(08 Marks)

8 a. What is a binary ladder DAC? Mention its advantages over the resistance divider DAC. Also explain accuracy and resolution of DAC. (06 Marks)

b. Explain the working of a 2-bit flash A/D converter. List its applications. (08 Marks)

c. Explain the successive approximation technique of A/D conversion. When is it useful?

(06 Marks)